20486 - FONDAMENTI DI BUSINESS ANALYTICS / PRINCIPLES OF BUSINESS ANALYTICS
Department of Decision Sciences
For the instruction language of the course see class group/s below
EMANUELE BORGONOVO
Classe 1: GABRIELE GURIOLI, Classe 2: MICHELE IMPEDOVO, Classe 3: MICHELE IMPEDOVO
Classe/i impartita/e in lingua italiana
Mission e Programma sintetico
MISSION
PROGRAMMA SINTETICO
- Decision analysis: diagrammi di influenza e alberi decisionali.
- Valore dell'informazione: EVSI e EVPI.
- Programmazione lineare.
- Modelli predittivi per risposta numerica: regressione lineare.
- Diagnostiche del modello di regressione lineare (multicollinearità, eteroschedasticità, analisi dei residui).
- Modelli predittivi per risposta categorica: regressione logistica.
Risultati di Apprendimento Attesi (RAA)
CONOSCENZA E COMPRENSIONE
- Riconoscere modelli appropriati per la soluzione di problemi di business e di gestione.
- Identificare la corretta metodologia per la soluzione di problemi di business e di gestione.
- Distinguere tra modelli deterministici e non deterministici.
CAPACITA' DI APPLICARE CONOSCENZA E COMPRENSIONE
- Organizzare le informazioni per costruire un modello quantitativo coerente con le ipotesi poste.
- Tradurre un problema di decisione in un corrispondente modello quantitativo.
- Utilizzare i software Excel (Solver), TreePlan, R al fine di determinare le soluzioni del problema.
- Interpretare le soluzioni derivate dall'implementazione del modello prescelto al fine di definire le decisioni ottimali.
- Analizzare i modelli con strumenti di analisi di sensibilità per ottenere "managerial insights".
Modalità didattiche
- Lezioni frontali
- Esercitazioni (esercizi, banche dati, software etc.)
DETTAGLI
L'attività di insegnamento-apprendimento di questo corso si articola in lezioni frontali in cui vengono esposti problemi manageriali e vengono proposti e discussi modelli di soluzione mediante metodi quantitativi. Lo studente viene guidato:
- Alla identificazione del modello quantitativo, di cui vengono illustrati principi e proprietà.
- All'implementazione tramite software dedicato.
- Alla soluzione del problema.
- All'interpretazione della soluzione.
- All'analisi della variabilità delle soluzioni in funzione dei parametri in input.
Vengono in particolare utilizzati in aula EXCEL (Solver), TreePlan, R. Sono previste due esercitazioni in aula durante le quali gli studenti svolgono con il loro portatile attività sia individuale sia di gruppo finalizzate al percorso descritto (identificazione del modello, implementazione dei dati, soluzione e analisi di sensibilità). Tali esercitazioni servono come autovalutazione dell’apprendimento degli aspetti indicati.
Metodi di valutazione dell'apprendimento
Accertamento in itinere | Prove parziali | Prova generale | |
---|---|---|---|
|
x |
STUDENTI FREQUENTANTI E NON FREQUENTANTI
La valutazione, identica sia per studenti frequentanti sia per studenti non frequentanti, è affidata interamente (100% del voto) a un assessment su piattaforma online organizzato per problemi e mediante analisi dei dati, articolato in domande numeriche a risposta aperta e domande a risposta multipla. La prova mira a verificare:
- La capacità di identificare un modello in modo coerente con le ipotesi e con i dati assegnati.
- La capacità di implementare il modello con il software opportuno.
- La capacità di interpretare l'output del software.
- La capacità di valutare la sensibilità delle soluzioni rispetto ai parametri in input.
Materiali didattici
STUDENTI FREQUENTANTI E NON FREQUENTANTI
- G.E. MONAHAN, Management Decision Making, Cambridge University Press, 2000.
- F.S. HILLIER and G.J. LIEBERMAN, Introduction to Operations Research, 2001, Second Edition.
- F. IOZZI, Un'introduzione ai modelli matematici nel management, 2015 (disponibile in pdf sull'e-learning del corso).
- D.J. CAMM, J.J. COCHRAN, M.J. FRY, et al., Essentials of Business Analytics, Cengage, 2015.
- J. FOX, Using the R Commander: A Point-and-Click Interface for R, Chapman and Hall CRC, 2016
- Note distribuite dai docenti.
Class group/s taught in English
Mission & Content Summary
MISSION
CONTENT SUMMARY
- Decision analysis: influence diagrams and decision trees.
- Value of information: EVSI and EVPI.
- Linear programming.
- Predictive models for a continuous response: linear regression.
- Diagnostics of the linear regression model (multicollinearity, heteroscedasticity, residual analysis).
- Predictive models for a categorical response: logistic regression.
Intended Learning Outcomes (ILO)
KNOWLEDGE AND UNDERSTANDING
- Recognize appropriate models to solve business and management problems.
- Identify the correct methodology for solving business and management problems.
- Discern between deterministic and non-deterministic models.
APPLYING KNOWLEDGE AND UNDERSTANDING
- Organize information to build a quantitative model in line with the input posed.
- Translate a decision problem into a corresponding quantitative model.
- Use the software Excel (Solver), TreePlan, R in order to determine solutions to a problem.
- Interpret solutions derived from implementing the chosen model in order to make optimal decisions.
- Analyze models with sensitivity analysis tools to obtain "managerial insights".
Teaching methods
- Face-to-face lectures
- Exercises (exercises, database, software etc.)
DETAILS
Teaching and learning activities for this course are divided into face-to-face lectures during which management problems are explained and solution models through quantitative methods are proposed and discussed. Students are assisted in:
- Identifying the quantitative model, whose principles and properties are described.
- Implementation through dedicated software.
- The solution to the problem.
- Interpreting the solution.
- Analysis of the variability of solutions on the basis of input parameters.
In particular, Excel (Solver), TreePlan and R are used in the classroom. Two in-class exercise sessions are held during which students complete both individual and group activities with their laptops, aimed at the described procedure (identifying a model, implementing data, solutions and sensitivity analysis). These exercises are used as self-assessment of learning of the aspects indicated.
Assessment methods
Continuous assessment | Partial exams | General exam | |
---|---|---|---|
|
x |
ATTENDING AND NOT ATTENDING STUDENTS
Assessment, both for attending and non-attending students, is based entirely (100% of the grade) on an assessment on an online platform with problems to solve and through data analysis, divided into open-ended numerical questions and multiple-choice questions. The exam aims to verify:
- The ability to identify a model in line with the hypothesys theories and data assigned.
- The ability to implement the model with the appropriate software.
- The ability to interpret the software’s output.
- The ability to assess the sensitivity of the solutions compared to the input parameters.
Teaching materials
ATTENDING AND NOT ATTENDING STUDENTS
- G.E MONAHAN, Management Decision Making, Cambridge University Press, 2000.
- F. IOZZI, Un'introduzione ai modelli matematici nel management, 2015 (disponibile in pdf sull'e-learning del corso).
- F.S. HILLIER and G.J. LIEBERMAN, Introduction to Operations Research, 2001, Second Edition.
- D.J. CAMM, J.J. COCHRAN, M.J. FRY, et al., Essentials of Business Analytics, Cengage, 2015.
- J. FOX, Using the R Commander: A Point-and-Click Interface for R, Chapman and Hall CRC, 2016.
- Notes provided by the teachers.