30592 - TOPICS IN COMPUTATIONAL MODELLING: FROM INFORMATION THEORY TO EVOLUTIONARY MODELS
Department of Computing Sciences
FRANCESCA BUFFA
Suggested background knowledge
Mission & Content Summary
MISSION
CONTENT SUMMARY
▪ Introduction to Information Theory
▪ Review of information measures
▪ Codes and compression
▪ Evolution
▪ Evolutionary models
▪ Role of evolution in learning
▪ Genetics algorithms
▪ Evolutionary computation
▪ Intelligent Agents
Intended Learning Outcomes (ILO)
KNOWLEDGE AND UNDERSTANDING
▪ State and use the basic concepts in information theory, and their applications
▪ Discuss evolution as a framework for learning, and its connection with Artificial Intelligence
▪ Describe the basic ideas of evolutionary computation, and the main methodologies
APPLYING KNOWLEDGE AND UNDERSTANDING
▪ Demonstrate the ability to recognize evolution in real-world situations
▪ Use conceptual ideas of evolution theory in problem solving
▪ Apply evolutionary models to power intelligent agents
Teaching methods
- Face-to-face lectures
- Individual assignments
- Group assignments
- Interactive class activities on campus/online (role playing, business game, simulation, online forum, instant polls)
DETAILS
- Individual assignements: each student will be required to apply evolutionary computation to a real-world problem, and provide a written report and a code.
- Groups assigment/Interactive class activities: students will be divided in groups and will research on the role that evolution plays in learning, recent developments and further potential. Groups are expected to present and discuss their findings with the class (questions will be provided as a guide), and provide a written essay summarizing their ideas.
Assessment methods
Continuous assessment | Partial exams | General exam | |
---|---|---|---|
|
x | ||
|
x | ||
|
x |
ATTENDING AND NOT ATTENDING STUDENTS
The exam consists of a theory part and problem solving projects.
- The theory part consists in exercises and questions to be answered on paper, and is used to asses the "knowledge and understanding" learning objectives. This contributes to 50% of the final grade.
- The project consists in a code that uses evolutionary programming to solve a real-world problem, to be developed individually and described through a written report, which is evaluated by the teachers. This contributes to 30% of the final grade.
- An interactive activity between working groups is organized. This contributes to the remaining 20% of the final grade, and will be marked as group work (same mark to all members of the group).
The projects are used to asses the "applying knowledge and understanding" learning objectives. In order to pass the exam, students must achieve a passing grade in both the theory part and the projects part.
Teaching materials
ATTENDING AND NOT ATTENDING STUDENTS
T. Cover, and J. Thomas. Elements of Information Theory, Second Edition. Wiley-Interscience, 2006. ISBN: 9780471241959.
A.E. Eiben, J.E. Smith. Introduction to Evolutionary Computing. Springer; 2nd ed. 2015. ISBN: 9783662448731
Additional teaching material will be provided during the course