Course 2024-2025 a.y.

20872 - MATHEMATICAL METHODS IN COMPUTER SCIENCE

Department of Decision Sciences

Course taught in English

Class timetable
Exam timetable
Go to class group/s: 31
AI (8 credits - I sem. - OBS  |  MAT/05)
Course Director:
ELIA BRUE'

Classes: 31 (I sem.)
Instructors:
Class 31: ELIA BRUE'


Mission & Content Summary

MISSION

The mission of the course is to equip students in the field of computer science with essential mathematical tools derived from linear algebra and discrete mathematics. This course is divided into two main parts: "Topics in Linear Algebra" and "Topics in Discrete Mathematics." In the first part, "Topics in Linear Algebra," students will explore a series of tools, techniques, and principles of linear algebra. They will understand the geometry behind linear algebra, scalar products, norms, and operator norms, applying them to variational problems and optimization. The spectral theorem for Hermitian and Normal operators will be covered, along with the SVD decomposition and applications. The second part, "Topics in Discrete Mathematics," will cover a series of topics in combinatorics and graph theory. Students will delve into various aspects of combinatorics, mastering asymptotic reasoning. Additionally, students will be introduced to the spectral theory of graphs, exploring the connections between graph theory and linear algebra. Throughout this course, students will refine their problem-solving skills and develop the capacity to apply mathematical tools to address challenges within the field of computer science.

CONTENT SUMMARY

Topics in linear algebra:

      

1. Review of basic concepts:

  • Real and Complex vector spaces
  • Linear operators
  • Eigenvalues, eigenvectors

 

2. The Geometry of linear algebra:

  • Real and Hermitian inner product
  • Orthogonality, orthonormal bases
  • Projections, orthogonal projections, variational characterization
  • The Unitary and Orthogonal Group

 

3. Matrix norms

  • Norms, p-norms
  • Operator norms
  • Hilbert-Schmidt inner product
  • Spectral radius, Gelfand formula, variational characterization of the spectral radius*

 

 4. Hermitian and Normal operators

  • Hermitian operators
  • Normal operators
  • Spectral Theorem
  • Variational characterization of eigenvalues, Rayleigh quotient, generalized Rayleigh quotient
  • Spectral mapping theorem
  • Complements*: Infinite dimensional spaces, compact operators, Laplacian and Poincarè inequality

 

 5. SVD Decompositiona and applications

  • Singular Values, variational characterization
  • SVD decomposotion
  • Eckart-Young, the closest rank k-matrix 
  • Least square method, pseudo inverse

 

 

6. Multilinear Algebra*

  • Multilinear forms
  • Exterior product, exterior algebra
  • Determinant, volume
  • Cross-product in R^3, applications, and relations with projections

 

 

 

Topics in discrete mathematics:

 

1. Review of basic concepts

  • Set theory
  • Functions and relations
  • Counting methods

 

2. Graph theory

  • Review of the basics: Terminology, type of graphs, connectivity
  • Representation of a graph: Adjacency matrix, Incidence matrix
  • Spectral graph theory: The Laplacian matrix and its eigenvalues
  • Cheeger inequalities*

 

3. More on counting*

  • Generating functions
  • Recurrence relations

 

4. Asymptotics

  • Basics of asymptotic analysis: big O notation, hierarchy
  • Big O manipulation, examples
  • Asymptotic combinatorics: examples

 

 

 

 

 

 


Intended Learning Outcomes (ILO)

KNOWLEDGE AND UNDERSTANDING

At the end of the course student will be able to...
  • Comprehend the geometric concepts involved in the formalism of linear algebra.
  • Understand scalar products, norms, and operator norms in real and complex settings.
  • Develop familiarity with the spectral theorem for normal and Hermitian operators.
  • Understand the SVD decomposition and its applications.
  • Acquire a basic understanding of graph spectral theory.

APPLYING KNOWLEDGE AND UNDERSTANDING

At the end of the course student will be able to...

 

  • Perform diagonalization and matrix decompositions, both real and complex, and utilize these tools to compute projections and matrix functions.

  • Use scalar products, norms, and operator norms in optimization and variational problems.

  • Manipulate expressions involving exterior products, inner products, trace operators, and operator functions.

  • Solve counting problems using and determine the asymptotic growth in recurrence relations and combinatorial problems.

     

     

     

     

     


Teaching methods

  • Practical Exercises

DETAILS

Students are assigned weekly exercises that are directly related to the concepts taught during the week. These exercises are meant to be solved independently by the students.

During the subsequent week's class, we will collaboratively solve and engage in discussions on the assigned exercises.

This approach promotes active learning, as students have the opportunity to engage in collaborative problem-solving. By discussing the exercises, students can clarify any misconceptions, deepen their understanding, and learn alternative approaches to problem-solving.

 


Assessment methods

  Continuous assessment Partial exams General exam
  • Written individual exam (traditional/online)
  x x

ATTENDING AND NOT ATTENDING STUDENTS

  • Partial exams consist of two written exams, one at the midpoint of the course and one at the end. The final grade is calculated as the average of these two scores.
  • General exam: written exam at the end of the course that contributes to the overall assessment.

 

Each written exam comprises five exercises with multiple bullet points covering all the presented material.

A total of 34 points will be assigned, with scores above 34 receiving the maximum grade. The exam evaluates the acquisition of basic knowledge and problem-solving abilities. The exercises vary in difficulty, with the first three emphasizing fundamental concepts and accounting for 25 out of 34 points, while the last two require more problem-solving and critical thinking, accounting for the remaining points.


Teaching materials


ATTENDING AND NOT ATTENDING STUDENTS

  • Lecture notes of the course
  • Introduction to linear algebra. Gilbert Strang
  • Linear algebra and learning from data. Gilbert Strang
  • Concrete Mathematics. Ronald L. Graham, Donald E. Knuth, Oren Patashnik
Last change 22/04/2024 19:29