Course 2022-2023 a.y.

30559 - GAME THEORY AND MECHANISM DESIGN

Department of Economics

Course taught in English
Go to class group/s: 27
BAI (8 credits - I sem. - OB  |  SECS-P/01)
Course Director:
CHRISTOPH CARNEHL

Classes: 27 (I sem.)
Instructors:
Class 27: CHRISTOPH CARNEHL


Mission & Content Summary

MISSION

The aim of the course is twofold. First, to provide students with a rich toolkit allowing them to identify, model, and reason through strategic interactions (such as business strategies, negotiations, etc.) and to apply this toolkit when designing strategic environments (such as auctions, competitions, teamwork, etc.). Second, and in the interdisciplinary spirit of the program, to illustrate the ability of mathematics in modeling, analyzing, and understanding real-world social as well as business interactions.

CONTENT SUMMARY

 

  • What is Game Theory?
  • Static Games of Complete Information
    • Rationalizability and iterated dominance
    • Pure and mixed strategy Nash equilibrium
    • Foundations for Nash equilibrium
    • Correlated equilibrium
    • Two-person zero-sum games and no-regret dynamics
  • Static Games of Incomplete Information
    • Formalizing incomplete information in games
    • Bayesian Nash equilibrium
  • Multistage Games of Complete Information
    • Strategies in multistage games
    • Rationalizability and backward induction
    • Subgame perfect equilibrium
  • Multistage Games of Incomplete Information
    • Information sets and strategies
    • Perfect Bayesian equilibrium and sequential equilibrium
  • Signaling Games
    • Job market signaling
    • Pooling and separating equilibria
  • Repeated Games
    • Relevance of repeated interactions
    • Folk Theorem
  • Bargaining
    • Nash bargaining
    • Rubinstein bargaining
  • What is Mechanism Design?
    • Introduction to designing strategic interactions
    • Monopolist pricing as a screening problem
    • Introduction to the revelation principle and incentive constraints
  • Bayesian and Dominant-Strategy Incentive Compatibility
  • Efficient Mechanisms
  • Auctions
    • Revenue Equivalence
    • First-Price Auctions
    • Second-Price Auctions
    • Multi-unit auctions
  • Principal-Agent Models
    • Moral hazard
    • Adverse selection
  • Applications of the Theory
    • Sponsored-Search Auctions, algorithmic pricing and collusion, cryptography, …

Intended Learning Outcomes (ILO)

KNOWLEDGE AND UNDERSTANDING

At the end of the course student will be able to...
  • distinguish between decision- and game-theoretic problems
  • identify strategic interactions
  • describe strategic interactions using formal models and approaches learned during the course
  • express the importance of incentive compatibility and individual rationality when designing strategic environments.

APPLYING KNOWLEDGE AND UNDERSTANDING

At the end of the course student will be able to...
  • apply mathematical modeling to real-world strategic interactions
  • use the concepts taught to solve and analyze such mathematical models
  • prove results in game theory and mechanism design
  • translate the models’ insights into various real-world situations, such as auction design.

Teaching methods

  • Face-to-face lectures
  • Individual assignments

DETAILS

In the face-to-face lectures, we will introduce, motivate and discuss the course topics and models and how they apply to various economic and other real-world settings. Moreover, we will prove important game-theoretic/mechanism design results thereby acquiring the relevant skills to formally set up and analyze models individually and solve problems together in these lectures. In addition, we will apply this knowledge to real-world settings and discuss the insights game theory and mechanism design can deliver in practice. The individual assignments, which will take the form of problem sets, are designed to have the students solve problems and prove results by themselves further enhancing students' understanding of the topic and their ability to study strategic interactions as well as their design. After their submission, we will discuss the problem sets and insights from solving them in the class.


Assessment methods

  Continuous assessment Partial exams General exam
  • Written individual exam (traditional/online)
  x x
  • Individual assignment (report, exercise, presentation, project work etc.)
x    

ATTENDING AND NOT ATTENDING STUDENTS

Both attending and non-attending students will be treated identically and the form of the assessment is exclusively written. The students can take either two partial exams or one general exam which account for 80% of the final grade. The remaining 20% will be based on individual assignments in the form of problem sets. The written exams ask open questions to prove theoretical results, solve problems related to those presented in the lectures and individual assignments, and discuss the implications in and the relation of findings to the real world. The individual assignments will be similar to the exam and will consist of proving theoretical results and solving problems as well as discussing the findings. Both assessment methods verify the students’ ability to identify, formalize and solve strategic interactions, prove results in game theory and mechanism design, as well as the ability to apply formal reasoning to real-world problems.


Teaching materials


ATTENDING AND NOT ATTENDING STUDENTS

There is no mandatory textbook for the class. The material in the form of lecture notes/slides will be distributed during the semester and a list of additional readings will be provided.

Last change 22/06/2022 08:42