Info
Logo Bocconi

Course 2019-2020 a.y.

20188 - QUANTITATIVE FINANCE AND DERIVATIVES - MODULE 1

FIN
Department of Finance

For the instruction language of the course see class group/s below

Go to class group/s: 15 - 16 - 17

FIN (6 credits - I sem. - OB  |  SECS-S/06)
Course Director:
FULVIO ORTU

Classi: 15 (I sem.)
Docenti responsabili delle classi:
Classe 15: ANNA BATTAUZ

Classe/i impartita/e in lingua italiana

Mission e Programma sintetico
MISSION

Il corso fornisce alcuni strumenti teorici essenziali per l’analisi quantitativa dei mercati finanziari. Si analizzano diversi modelli per la descrizione dell’evoluzione dei prezzi dei titoli. In particolare, si trattano sia modelli nei quali la dinamica dei prezzi evolve in tempo discreto, come nel cosiddetto modello binomiale, sia modelli in tempo continuo, come quello che conduce alla famosa formula di Black-Scholes. L’analisi dei vari modelli è unificata dal fondamentale principio di assenza di opportunità di arbitraggio. Tale approccio consente di ottenere formule per la valutazione e la copertura (pricing and hedging) di vari titoli derivati.

PROGRAMMA SINTETICO
  • Il modello di mercato finanziario uni periodale: nozioni di base, legge del prezzo unico, arbitraggi, vettori di prezzi degli stati, probabilità neutrali al rischio.
  • Il primo teorema fondamentale della finanza.
  • Mercati completi e secondo teorema fondamentale della finanza.
  • La valutazione neutrale al rischio di derivati.
  • Il modello di mercato finanziario multi periodale in tempo discreto. Strutture informative e processi stocastici di prezzi, dividendi e strategie d’investimento.
  • Assenza di arbitraggio e proprietà di martingala del processo del guadagno. Completezza dinamica. Valutazione dei derivati in ambito multi periodale.
  • Mercati finanziari in tempo continuo: informazione, processi dei prezzi e strategie di investimento. Il moto Browniano e le equazioni differenziali stocastiche.
  • Il modello di Black e Scholes: non arbitraggio, completezza e valutazione neutrale al rischio dei derivati europei. La formula di Black-Scholes.
  • L’equazione alle derivate parziali di Black-Scholes. Il prezzo di mercato del rischio.

Risultati di Apprendimento Attesi (RAA)
CONOSCENZA E COMPRENSIONE
Al termine dell'insegnamento, lo studente sarà in grado di...

Illustrare e spiegare:

  • Le nozioni di base e le definizione dei modelli di mercato finanziario a tempo discreto: strutture informative e processi stocastici di prezzi, dividendi e strategie d’investimento, legge del prezzo unico, le nozioni di non arbitraggio e delle probabilità neutrali al rischio.
  • Il primo teorema fondamentale della finanza.
  • La nozione di completezza e il secondo teorema fondamentale della finanza.
  • Il legame tra non arbitraggio e la proprietà di martingala del guadagno attualizzato.
  • Il principio della valutazione neutrale al rischio di derivati.
  • i modelli di mercato a tempo continuo con moto Browniano standard e equazioni differenziali stocastiche.
  • le caratteristiche del modello di Black e Scholes, la formula di Black e Scholes e l'equazione alle derivate parziali di Black e Scholes.
CAPACITA' DI APPLICARE CONOSCENZA E COMPRENSIONE
Al termine dell'insegnamento, lo studente sarà in grado di...

Applicare le definizioni e i risultati teorici per:

  • analizzare l'assenza di arbitraggio sia nei mercati a tempo discreto che in quelli a tempo continuo;
  • calcolare le probabilità neutrali al rischio ed applicarle per valutare l'assenza di arbitraggio;
  • esaminare la nozione di completezza di un mercato e connetterla con l'assenza di arbitraggio;
  • calcolare i prezzi di non arbitraggio dei titoli derivati;
  • calcolare le strategie di copertura dei titoli derivati.

Modalità didattiche
  • Lezioni frontali
DETTAGLI

Lezioni frontali. 


Metodi di valutazione dell'apprendimento
  Accertamento in itinere Prove parziali Prova generale
  • Prova individuale scritta (tradizionale/online)
  •   x x
    STUDENTI FREQUENTANTI E NON FREQUENTANTI

    Le prove d’esame consistono in tre domande. Due domande sono di carattere applicativo (esercizi) e una è di carattere teorico (vi possono ad esempio essere richieste definizioni o dimostrazioni discusse in classe). In particolare, le due domande di carattere applicativo verificano la capacità di applicare le definizioni e i risultati teorici per:

    • Analizzare l'assenza di arbitraggio sia nei mercati a tempo discreto che in quelli a tempo continuo.
    • Calcolare le probabilità neutrali al rischio ed applicarle per valutare l'assenza di arbitraggio.
    • Esaminare la nozione di completezza di un mercato e connetterla con l'assenza di arbitraggio.
    • Calcolare i prezzi di non arbitraggio dei titoli derivati.
    • Calcolare le strategie di copertura dei titoli derivati.

    La domanda di carattere teorico verte su una lista di argomenti  che viene distribuita prima del periodo di esami.


    Materiali didattici
    STUDENTI FREQUENTANTI E NON FREQUENTANTI

    A. BATTAUZ, F. ORTU, Teoria dell’arbitraggio in tempo discreto e continuo, dispensa EGEA, a.a. 2009/10.

    Modificato il 04/06/2019 13:57

    Classes: 16 (I sem.) - 17 (I sem.)
    Instructors:
    Class 16: FULVIO ORTU, Class 17: FULVIO ORTU

    Class group/s taught in English

    Mission & Content Summary
    MISSION

    The course equips the students with some fundamental quantitative tools for the analysis of financial markets. We discuss a set of models that describe the evolution over time of securities’ prices. We deal both with discrete-time models, such as the Binomial Model, and with continuous-time models, such as the Geometric Brownian Motion model that underlies the famous Black-Scholes formula for option pricing. The unifying theme is the fundamental principle of no-arbitrage. This principle is the basis of various models for pricing and hedging derivative securities.

    CONTENT SUMMARY
    • The one-period model of financial markets: basic notation and definitions, law of one price, arbitrage, state-price vectors,risk-neutral probabilities.
    • The First Fundamental Theorem of Asset Pricing.
    • Complete markets and the Second Fundamental Theorem of Asset Pricing.
    • Risk-Neutral valuation of derivative securities.
    • The multi-period model of financial markets in discrete time. Information structures, stochastic processes, prices and dividend processes, dynamic investment strategies.
    • No arbitrage and the martingale property of the discounted gain process. Dynamic completeness. Risk-neutral valuation of derivatives in the multi-period case.
    • Continuous-time financial markets: information, continuous-time stochastic processes, price processe and investment strategies. Standard Brownian motions and Stochastic Differential Equations (SDEs).
    • The Black-Scholes model: no-arbitrage, completeness e and risk-neutral valuation of european-type derivatives.The Black-Scholes formula done right.
    • The Black-Scholes Partial Differential Equation. The market price of risk.

    Intended Learning Outcomes (ILO)
    KNOWLEDGE AND UNDERSTANDING
    At the end of the course student will be able to...

    Illustrate and explain:

    • The basic notation and definitions of discrete-time models of financial markets: information structures, stochastic processes, prices and dividend processes, dynamic investment strategies, the law of one price, the notions of no arbitrage and of risk-neutral probabilities.
    • The First Fundamental Theorem of Asset Pricing.
    • The notion of complete markets and the Second Fundamental Theorem of Asset Pricing.
    • The connection between No arbitrage and the martingale property of the discounted gain process.
    • The principle of Risk-neutral valuation of derivative securities.
    • The modelling of financial markets in continuous-time via Standard Brownian Motions and Stochastic Differential Equations (SDEs).
    • The main features of the Black-Scholes model, the Black-Scholes formula and the Black-Scholes Partial Differential Equation.
    APPLYING KNOWLEDGE AND UNDERSTANDING
    At the end of the course student will be able to...

    Apply the definitions and theoretical results to:

    • Assess if no arbitrage holds in both discrete and continuos models of financial markets.
    • Compute risk-neutral probabilities and employ them to evaluate the absence of arbitrage.
    • Examine the compleness of the market and connect it to no arbitrage.
    • Compute no arbitrage prices of various examples of derivative securities.
    • Compute hedging strategies for various examples of derivative securities.

    Teaching methods
    • Face-to-face lectures
    DETAILS

    Lectures.


    Assessment methods
      Continuous assessment Partial exams General exam
  • Written individual exam (traditional/online)
  •   x x
    ATTENDING AND NOT ATTENDING STUDENTS

    Both the partial and the final exams consists of three exam questions. Two exam questions consist of numerical exercises, the third tests you on theoretical aspects discussed in the course, such as definitions, statements or proofs. More specifically, the numerical exercises test your capacity to apply the definitions and theoretical results to:

    • Assess if no arbitrage holds in both discrete and continuos models of financial markets.
    • Compute risk-neutral probabilities and employ them to evaluate the absence of arbitrage.
    • Examine the compleness of the market and connect it to no arbitrage.
    • Compute no arbitrage prices of various examples of derivative securities.
    • Compute hedging strategies for various examples of derivative securities.

    The question that tests knowledge of the theoretical aspects discussed in the course will be based on a list of topics that students are responsible to know for the exam. The list is distributed to the students ahead of the exams.


    Teaching materials
    ATTENDING AND NOT ATTENDING STUDENTS

    A. BATTAUZ, F. ORTU, Arbitrage Theory in Discrete and Continuous Time, Lecture Notes EGEA, 2010.

    Last change 04/06/2019 14:00